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As integration moves upward, the need for separate test drivers lessens. In fact,
if the top two levels of program structure are integrated top down, the number of
drivers can be reduced substantially and integration of clusters is greatly simplified.

Regression testing. Each time a new module is added as part of integration test-
ing, the software changes. New data flow paths are established, new 1/0 may occur,
and new control logic is invoked. These changes may cause problems with functions
that previously worked flawlessly. In the context of an integration test strategy, re-
gression testing is the re-execution of some subset of tests that have already been
conducted to ensure that changes have not propagated unintended side effects.

In a broader context, successful tests (of any kind) result in the discovery of errors,
and errors must be corrected. Whenever software is corrected, some aspect of the soft-
ware configuration (the -program, its documentation, or the data that support it) is
changed. Regression testing is the activity that helps to ensure that changes (due to
testing or for other reasons) do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset of all test
cases or using automated capture/playback tools. Capture/playback tools enable the
software engineer to capture test cases and results for subsequent playback and
comparison. The regression test suite (the subset of tests to be executed) contains
three different classes of test cases:

e Arepresentative sample of tests that will exercise all software functions.

¢ Additional tests that focus on software functions that are likely to be affected
by the change.

e Tests that focus on the software components that have been changed.

As integration testing proceeds, the number of regression tests can grow quite large.
Therefore, the regression test suite should be designed to include only those tests
that address one or more classes of errors in each of the major program functions. It
is impractical and inefficient to re-execute every test for every program function
once a change has occurred.

Smoke testing. Smoke testing is an integration testing approach that is commonly
used when software products are being developed. It is designed as a pacing mech-
anism for time-critical projects, allowing the software team to assess its project on
a frequent basis. In essence, the smoke testing approach encompasses the following
activities:

1. Software components that have been translated into code are integrated into
a “build.” A build includes all data files, libraries, reusable modules, and engi-
neered components that are required to implement one or more product
functions.

2. A series of tests is designed to expose errors that will keep the build from
properly performing its function. The intent should be to uncover “show
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stopper” errors that have the highest likelihood of throwing the software
project behind schedule.

3. The build is integrated with other builds and the entire product (in its current
form) is smoke tested daily. The integration approach may be top down or
bottom up.

The daily frequency of testing the entire product may surprise some readers. How-
ever, frequent tests give both managers and practitioners a realistic assessment of
integration testing progress. McConnell [MCO96] describes the smoke test in the fol-
lowing manner:

The smoke test should exercise the entire system from end to end. It does not have to be
exhaustive, but it should be capable of exposing major problems. The smoke test should
be thorough enough that if the build passes, you can assume that it is stable enough to
be tested more thoroughly.

Smoke testing provides a number of benefits when it is applied on cobmplex, time-
critical software engineering projects:

o Integration risk is minimized. Because smoke tests are conducted daily,
incompatibilities and other show-stopper errors are uncovered early, thereby
reducing the likelihood of serious schedule impact when errors are
uncovered.

e The quality of the end-product is improved. Because the approach is construc-
tion (integration) oriented, smoke testing is likely to uncover both functional
errors and architectural and component-level design errors. If these errors
are corrected early, better product quality will result.

e Error diagnosis and correction are simplified. Like all integration testing
approaches, errors uncovered during smoke testing are likely to be associ-
ated with “new software increments"—that is, the software that has just been
added to the build(s) is a probable cause of a newly discovered error.

e Progress is easier to assess. With each passing day, more of the software has
been integrated and more has been demonstrated to work. This improves
team morale and gives managers a good indication that progress is being
made.
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“Treat the daily build os the heartheat of the project. If there’s no heartbeat, the project is dead.”

b

Strategic options. There has been much discussion (e.g., [BEI84]) of the relative
advantages and disadvantages of top-down versus bottom-up integration testing. In
general, the advantages of one strategy tend to result in disadvantages for the other
strategy. The major disadvantage of the top-down approach is the need for stubs and
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the attendant testing difficulties that can be associated with them. Problems associ-
ated with stubs may be offset by the advantage of testing major control functions
early. The major disadvantage of bottom-up integration is that “the program as an
entity does not exist until the last module is added” [MYE79]. This drawback is tem-
pered by easier test case design and a lack of stubs.

Selection of an integration strategy depends upon software characteristics and,
sometimes, project schedule. In general, a combined approach (sometimes called
sandwich testing) that uses top-down tests for upper levels of the program struc-
ture, coupled with bottom-up tests for subordinate levels may be the best com-
promise.

As integration testing is conducted, the tester should identify critical modules. A
critical module has one or more of the following characteristics: (1) addresses several
software requirements, (2) has a high level of control (resides relatively high in the
program structure), (3) is complex or error prone, or (4) has definite performance re-
quirements. Critical modules should be tested as early as possible. In addition, re-
gression tests should focus on critical module functions.

Integration test documentation. An overall plan for integration of the software
and a description of specific tests are documented in a Test Specification. This docu-
ment contains a test plan, a test procedure, is a work product of the software
process, and becomes part of the software configuration.

The test plan describes the overall strategy for integration. Testing is divided into
phases and builds that address specific functional and behavioral characteristics of
the software. For example, integration testing for a CAD system might be divided into
the following test phases:

e User interaction (command selection, drawing creation, display representa-
tion, error processing and representation).

e Data manipulation and analysis (symbol creation, dimensioning, rotation,
computation of physical properties).

o Display processing and generation (two-dimensional displays, three-
dimensional displays, graphs and charts).

o Database management (access, update, integrity, performance).

Each of these phases and subphases (denoted in parentheses) delineates a broad
functional category within the software and can generally be related to a specific do-
main within the software architecture. Therefore, program builds (groups of mod-
ules) are created to correspond to each phase. The following criteria and
corresponding tests are applied for all test phases:

Interface integrity. Internal and external interfaces are tested as each module (or
cluster) is incorporated into the structure.

Functional validity. Tests designed to uncover functional errors are conducted.
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Information content. Tests designed to uncover errors associated with local or
global data structures are conducted.

Performance. Tests designed to verify performance bounds established during
software design are conducted.

A schedule for integration, the development of overhead software, and related
topics is also discussed as part of the test plan. Start and end dates for each phase
are established and “availability windows” for unit tested modules are defined. A
brief description of overhead software (stubs and drivers) concentrates on charac-
teristics that might require special effort. Finally, test environment and resources are
described. Unusual hardware configurations, exotic simulators, and special test
tools or techniques are a few of many topics that may also be discussed.

The detailed testing procedure that is required to accomplish the test plan is de-
scribed next. The order of integration and corresponding tests at each integration
step are described. A listing of all test cases (annotated for subsequent reference)
and expected results is also included.

A history of actual test results, problems, or peculiarities is recorded in a Test Re-
port that can be appended to the Test Specification, if desired. Information contained
in this section can be vital during software maintenance. Appropriate references and
appendixes are also presented.

Like all other elements of a software configuration, the test specification format
may be tailored to the local needs of a software engineering organization. It is impor-
tant to note, however, that an integration strategy (contained in a test plan) and test-
ing details (described in a test procedure) are essential ingredients and must appear.

The objective of testing, stated simply, is to find the greatest possible number of errors
with a manageable amount of effort applied over a realistic time span. Although this
fundamental objective remains unchanged for object-oriented software, the nature of
object-oriented software changes both testing strategy and testing tactics (Chapter 14).

13.4.1 Unit Testing in the OO Context

When object-oriented software is considered, the concept of the unit changes. En-
capsulation drives the definition of classes. This means that each class and each in-
stance of a class (object) packages attributes (data) and the operations (functions)
that manipulate these data. An encapsulated class is usually the focus of unit test-
ing. However, operations within the class are the smallest testable units. Because a
class can contain a number of different operations and a particular operation may
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exist as part of a number of different classes, the tactics applied to unit testing must
change. )

We can no longer test a single operation in isolation (the conventional view of unit
testing) but rather as part of a class. To illustrate, consider a class hierarchy in which
an operation X is defined for the superclass and is inherited by a number of sub-
classes. Each subclass uses operation X, but it is applied within the context of the pri-
vate attributes and operations that have been defined for the subclass. Because the
context in which operation X is used varies in subtle ways, it is necessary to test op-
eration X in the context of each of the subclasses. This means that testing operation
X in a standalone fashion (the conventional unit testing approach) is usually ineffec-
tive in the object-oriented context.

Class testing for OO software is the equivalent of unit testing for conventional
software. Unlike unit testing of conventional software, which tends to focus on the
algorithmic detail of a module and the data that flow across the module interface,
class testing for OO software is driven by the operations encapsulated by the class
and the state behavior of the class.

13.4.2 Integration Testing in the OO Context

Because object-oriented software does not have an obvious hierarchical control
structure, traditional top-down and bottom-up integration strategies (Section 13.3.2)
have little meaning. In addition, integrating operations one at a time into a class (the
conventional incremental integration approach) is often impossible because of the
“direct and indirect interactions of the components that make up the class” [BER93].

There are two different strategies for integration testing of OO systems [BIN94].
The first, thread-based testing, integrates the set of classes required to respond to one
input or event for the system. Each thread is integrated and tested individually. Re-
gression testing is applied to ensure that no side effects occur. The second integra-
tion approach, use-based testing, begins the construction of the system by testing
those classes (called independent classes) that use very few (if any) server classes. Af-
ter the independent classes are tested, the next layer of classes, called dependent
classes, which use the independent classes, are tested. This sequence of testing lay-
ers of dependent classes continues until the entire system is constructed.

The use of drivers and stubs also changes when integration testing of OO systems
is conducted. Drivers can be used to test operations at the lowest level and for the test-
ing of whole groups of classes. A driver can also be used to replace the user interface
so that tests of system functionality can be conducted prior to implementation of the
interface. Stubs can be used in situations in which collaboration between classes is re-
quired but one or more of the collaborating classes has not yet been fully implemented.

Cluster testing is one step in the integration testing of OO software. Here, a cluster
of collaborating classes (determined by examining the CRC and object-relationship
model) is exercised by designing test cases that attempt to uncover errors in the
collaborations.
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Validation testing begins at the culmination of integration testing, when individual
components have been exercised, the software is completely assembled as a pack-
age, and interfacing errors have been uncovered and corrected. At the validation or
system level, the distinction between conventional and object-oriented software dis-
appears. Testing focuses on user-visible actions and user-recognizable output from
the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is
that validation succeeds when software functions in a manner that can be reason-
ably expected by the customer. At this point a battle-hardened software developer
might protest: “Who or what is the arbiter of reasonable expectations?”

Reasonable expectations are defined in the Software Requirements Specification—
a document that describes all user-visible attributes of the software. The specifica-
tion contains a section called Validation Criteria. Information contained in that
section forms the basis for a validation testing approach.

13.5.1 Validation Test Criteria

Software validation is achieved through a series of tests that demonstrate conformity
with requirements. A test plan outlines the classes of tests to be conducted, and a test
procedure defines specific test cases. Both the plan and procedure are designed to en-
sure that all functional requirements are satisfied, all behavioral characteristics are
achieved, all performance requirements are attained, documentation is correct, and
usability and other requirements are met (e.g., transportability, compatibility, error re-
covery, maintainability).

After each validation test case has been conducted, one of two possible condi-
tions exist: (1) The function or performance characteristic conforms to specification
and is accepted, or (2) a deviation from specification is uncovered and a deficiency
list is created. Deviation or error discovered at this stage in a project can rarely be
corrected prior to scheduled delivery. It is often necessary to negotiate with the cus-
tomer to establish a method for resolving deficiencies.

13.56.2 Configuration Review

An important element of the validation process is a configuration review. The intent
of the review is to ensure that all elements of the software configuration have been
properly developed, are cataloged, and have the necessary detail to bolster the sup-
port phase of the software life cycle. The configuration review, sometimes called an
audit, is discussed in more detail in Chapter 27.

13.5.3 Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will re-
ally use a program. Instructions for use may be misinterpreted; strange combinations
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of data may be regularly used; output that seemed clear to the tester may be unintel-
ligible to a user in the field.

When custom software is built for one customer, a series of acceptance tests are
conducted to enable the customer to validate all requirements. Conducted by the
end-user rather than software engineers, an acceptance test can range from an in-
formal “test drive” to a planned and systematically executed series of tests. In fact,
acceptance testing can be conducted over a period of weeks or months, thereby un-
covering cumulative errors that might degrade the system over time.

&hgsmsh&w(ag given a large enough beta-tester and
od quickly and the fix obvious to someone).”

If software is developed as a product to be used by many customers, it is imprac-
tical to perform formal acceptance tests with each one. Most software product
builders use a process called alpha and beta testing to uncover errors that only the
end-user seems able to find.

The alpha test is conducted at the developer’s site by end-users. The software is
used in a natural setting with the developer “looking over the shoulder” of typical
users and recording errors and usage problems. Alpha tests are conducted in a con-
trolled environment.

The beta test is conducted at end-user sites. Unlike alpha testing, the developer is
generally not present. Therefore, the beta test is a “live” application of the software
in an environment that cannot be controlled by the developer. The end-user records
all problems (real or imagined) that are encountered during beta testing and reports
these to the developer at regular intervals. As a result of problems reported during
beta tests, software engineers make modifications and then prepare for release of
the software product to the entire customer base.
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At the beginning of this book, we stressed the fact that software is only one element
of a larger computer-based system. Ultimately, software is incorporated with other
system elements (e.g., hardware, people, information), aansystem inte-
gration and validation tests are conducted. These tests fall outside the scope of the
software process and are not cdnducted solely by software engineers. However,
steps taken during software design and testing can greatly improve the probability
of successful software integration in the larger system.

3 is both unpleasant and inevitable.”

A classic system testing problem is “finger-pointing.” This occurs when an error
is uncovered, and each system element developer blames the other for the prob-
lem. Rather than indulging in such nonsense, the software engineer should antici-
pate potential interfacing problems and (1) design error-handling paths that test all
information coming from other elements of the system, (2) conduct a series of tests
that simulate bad data or other potential errors at the software interface, (3) record
the results of tests to use as “evidence” if finger-pointing does occur, and (4) par-
ticipate in planning and design of system tests to ensure that software is ade-
quately tested.

System testing is actually a series of different tests whose pnmaly_gurpose is to
fully exercise the computer—based system. Although each test has a different pur-
pose, all work to verify that system elements have been properly integrated and per-
form allocated functions. In the sections that follow, we discuss the types of system
‘tests [BE184] that are worthwhile for software-based systems. —

——
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13.6.1 Recovery Testing

Many computer-based systems must recover from faults and resume processing
within a prespecified time. In some cases, a system must be fault tolerant; that is, pro-
cessing faults must not cause overall system function to cease. In other cases, a sys-
tem failure must be corrected within a specified period of time or severe economic
damage will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways
and verifies that recovery is properly performed. If recovery is automatic (performed
by the system itself), reinitialization, checkpointing mechanisms, data recovery, and
restart are evaluated for correctness. If recovery requires human intervention, the
mean-time-to-repair (MTTR) is evaluated to determine whether it is within accept-
able limits.

13.6.2 Security Testing

Any computer-based system that manages sensitive information or causes actions
that can improperly harm (or benefit) individuals is a target for improper or illegal
penetration. Penetration spans a broad range of activities: hackers who attempt to
penetrate systems for sport; disgruntled employees who atté?nﬂﬁt‘tc;penetrate forre-.
venge; dishonest individuals who attempt to penetrate for illicit personal gain.

~Securily testing verifies that protection mechanisms built into a system will, in fact,
protect it from improper penetration. To quote Beizer [BEI84]: “The system's security
must, of course, be tested for invulnerability from frontal attack—but must also be
tested for invulnerability from flank or rear attack.”

During security testing, the tester plays the role(s) of the individual who desires to
penetrate the system. Anything goes! The tester may attempt to acquire passwords
through external clerical means; may attack the system with custom software de-
signed to break down any defenses that have been constructed; may overwhelm the
system, thereby denying service to others; may purposely cause system errors, hop-
ing to penetrate during recovery; may browse through insecure data, hoping to find
the key to system entry.

Given enough time and resources, good security testing will ultimately penetrate
a system. The role of the system designer is to make penetration cost more than the
value of the information that will be obtained.

13.6.3 Stress Testing

Software testing steps discussed earlier in this chapter result in thorough evaluation
of normal program functions and performance. Stress tests are designed to confront
programs with abnormal situations. In essence, the tester who performs stress test-
ing asks: “How high can we crank this up before it fails?”

Stress testing executes a system in a manner that demands resources in abnormal
quantity, frequency, or volume. For example, (1) special tests may be designed that
generate ten interrupts per second, when one or two is the average rate, (2) input
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data rates may be increased by an order of magnitude to determine how input func-
tions will respond, (3) test cases that require maximum memory or other resources
are executed, (4) test cases that may cause memory management problems are de-
signed, (5) test cases that may cause excessive hunting for disk-resident data are cre-
ated. Essentially, the tester attempts to overwhelm the program.

g o find true system bugs and you haven't subjected your software fo a roal sress fest, then Wgh

A variation of stress testing is a technique called sensitivity testing. In some situa-
tions (the most common occur in mathematical algorithms), a very small range of
data contained within the bounds of valid data for a program may cause extreme and
even erroneous processing or profound performance degradation. Sensitivity testing
attempts to uncover data combinations within valid input classes that may cause in-
stability or improper processing.

13.6.4 Performance Testing

For real-time and embedded systems, software that provides required function but
does not conform to performance requirements is unacceptable. Performance testing
is designed to test the run-time performance of software within the context of an in-
tegrated system. Performance testing occurs throughout all steps in the testing
process. Even at the unit level, the performance of an individual module may be as-
sessed as tests are conducted. However, it is not until all system elements are fully
integrated that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both
hardware and software instrumentation. That is, it is often necessary to measure
resource utilization (e.g., processor. cycles) in an exacting fashion. External in-
strumentation can monitor execution intervals, log events (e.g., interrupts) as they
occur, and sample machine states on a regular basis. By instrumenting a system,
the tester can uncover situations that lead to degradation and possible system
failure.

Test Planning

Q and Management
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Representative Tools? point of control for managing all phases of the testing
OTF (Object Testing Framework), developed by MCG process.
Software, Inc. {www.mcgsoft.com), provides a TestWorks, developed by Software Research, inc.
framework for managing suites of tests for Smalltalk (www.soft.com/Products/index.html), contains a fully
objects. integrated suite of festing tools including tools for test
QADirector, developed by Compuware Corp. management and reporting.
\ {(www.compuware.com/qacenter), provides a single : /

Software testing is an action that can be systematically planned and specified. Test
case design can be conducted, a strategy can be defined, and results can be evalu-
ated against prescribed expectations.

Debugging occurs as a consequence of successful testing. That is, when a test
case uncovers an error, debugging is an action that results in the removal of the er-
ror. Although debugging can and should be an orderly process, it is still very much
an art. A software engineer, evaluating the results of a test, is often confronted with
a “symptomatic” indication of a software problem. That is, the external manifesta-
tion of the error and the internal cause of the error may have no obvious relation-
ship to one another. The poorly understood mental process that connects a symptom
to a cause is debugging.

rted programming, we found to our surprise that it wasn't as easy fo get programs righ
hod to be discovered. | can remember the exnmnstnmwhenlmhadﬂutchu

éms going fo be spent in ﬁndmg mistakes in my own programs.”
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13.7.1 The Debugging Process

Debugging is not testing but always occurs as a consequence of testing.> Referring
to Figure 13.7, the debugging process begins with the execution of a test case. Re-
sults are assessed and a lack of correspondence between expected and actual per-
formance is encountered. In many cases, the noncorresponding data are a symptom
of an underlying cause as yet hidden. Debugging attempts to match symptom with
cause, thereby leading to error correction.

Debugging will always have one of two outcomes: (1) the cause will be found and
corrected, or (2) the cause will not be found. In the latter case, the person perform-

2 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

3 In making the statement, we take the broadest possible view of testing. Not only does the devel-
oper test software prior to release, but the customer/user tests software every time it is used!
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ing debugging may suspect a cause, design one or more test cases to help validate
that suspicion, and work toward error correction in an iterative fashion.

Why is debugging so difficult? In all likelihood, human psychology (see the next
section) has more to do with an answer than software technology. However, a few
characteristics of bugs provide some clues:

1. The symptom and the cause may be geographically remote. That is, the symp-
tom may appear in one part of a program, while the cause may actually be lo-
cated at a site that is far removed. Highly coupled components (Chapter 11)
exacerbate this situation.

N

The symptom may disappear (temporarily) when another error is corrected.

w

The symptom may actually be caused by nonerrors (e.g., round-off inaccura-
cies).

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing
problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time
application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded
systems that couple hardware and software inextricably.

8. The symptom may be due to causes that are distributed across a number of
tasks running on different processors [CHE90].

During debugging, we encounter errors that range from mildly annoying (e.g., an
incorrect output format) to catastrophic (e.g., the system fails, causing serious eco-
nomic or physical damage). As the consequences of an error increase, the amount
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of pressure to find the cause also increases. Often, pressure forces a software devel-
oper to fix one error while at the same time introducing two more.

Md&hmmlsmnshurduswmmgupmgmmmﬂuﬁﬂplm
mma liow will you ever debug i1?”"

13.7.2 Psychological Considerations

Unfortunately, there appears to be some evidence that debugging prowess is an in-
nate human trait. Some people are good at it, and others aren't. Although experi-
mental evidence on debugging is open to many interpretations, large variances in
debugging ability have been reported for programmers with the same education and
experience.

Commenting on the human aspects of debugging, Shneiderman [SHN8O] states:

Debugging is one of the more frustrating parts of programming. It has elements of prob-
lem solving or brain teasers, coupled with the annoying recognition that you have made
amistake. Heightened anxiety and the unwillingness to accept the possibility of errors in-
creases the task difficulty. Fortunately, there is a great sigh of relief and a lessening of ten-
sion when the bug is ultimately . . . corrected.

Although it may be difficult to “learn” debugging, a number of approaches to the
problem can be proposed. We examine these in the next section.

SAFEHOME
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13.7.3 Debugging Strategies

Regardless of the approach that is taken, debugging has one overriding objective: to

find and correct the cause of a software error. The objective is realized by[a combi-

nation of systematic evaluation, intuition, and luck. Bradley [BRA85] describes the

debugging approach in this way:

Debugging is a straightforward application of the scientific method that has been devel-
oped over 2,500 years. The basis of debugging is to locate the problem’s source [the
cause] by binary partitioning, through working hypotheses that predict new values to be
examined.

Take a simple non-software example: A lamp in my house does not work. If nothing
in the house works, the cause must be in the main circuit breaker or outside. I look around
to see whether the neighborhood is blacked out. I plug the suspect lamp into a working
socket and a working appliance into the suspect circuit. So goes the alternation of hy-
pothesis and test. '

In general, three debugging strategies have been proposed [MYE79]: (1) brute force,
(2) backtracking, and (3) cause elimination. Each of these strategies can be conducted
manually, but modern debugging tools can make the process much more effective.

Z:i‘mﬂ broken program is getting it fo fail repeatably (on the simplest example

Debugging tactics. The brute force category of debugging is probably the most
common and least efficient method for isolating the cause of a software error. We ap-
ply brute force debugging methods when all else fails. Using a “let the computer find
the error” philosophy, memory dumps are taken, run-time traces are invoked, and the
program is loaded with output statements. We hope that somewhere in the morass of
information that is produced we will find a clue that can lead us to the cause of an er-
ror. Although the mass of information produced may ultimately lead to success, it
more frequently leads to wasted effort and time. Thought must be expended first!

Backtracking is a fairly common debugging approach that can be used success-
fully in small programs. Beginning at the site where a symptom has been uncovered,
the source code is traced backward (manually) until the site of the cause is found.
Unfortunately, as the number of source lines increases, the number of potential
backward paths may become unmanageably large.

The third approach to debugging—cause elimination—is manifested by induction
or deduction and introduces the concept of binary partitioning. Data related to the er-
ror occurrence are organized to isolate potential causes. A “cause hypothesis” is de-
vised, and the aforementioned data are used to prove or disprove the hypothesis.
Alternatively, a list of all possible causes is developed, and tests are conducted to
eliminate each. If initial tests indicate that a particular cause hypothesis shows prom-
ise, data are refined in an attempt to isolate the bug.
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Automated debugging. Each of these debugging approaches can be supplemented
with debugging tools that provide semi-automated support for the software engineer
as debugging strategies are attempted. Hailpern and Santhanam [HAIO2] summarize
the state of these tools when they note, “. . . many new approaches have been pro-
posed and many commercial debugging environments are available. Integrated de-
velopment environments (IDEs) provide a way to capture some of the
language-specific predetermined errors (e.g., missing end-of-statement characters,
undefined variables, and so on) without requiring compilation.” One area that has
caught the imagination of the industry is the visualization of the necessary underlying
programming constructs as a means to analyze a program [BAE97]. A wide variety of
debugging compilers, dynamic debugging aids (“tracers”), automatic test case gener-
ators, and cross-reference mapping tools are available. However, tools are not a sub-
stitute for careful evaluation based on a complete design model and clear source code.

SOFTWARE TooLs

P Debugging
Q Obijective: These tools provide automated

assistance for those who must debug software
problems. The intent is to provide insight that may be
difficult to obtain if approaching the debugging process
manually.

Mechanics: Most debugging tools are programming
language and environment specific.

Representative Tools*

Jprobe ThreadAnalyzer, developed by Sitraka
(www.sitraka.com), he|ps in the evaluation of thread
prob|ems—dead|ocks, stalls, and race conditions that
can pose serious hazards to application performance
in Java apps.

C+ + Test, developed by Parasoft
(www.parasoft.com), is a unit testing tool that supports

\o full range of tests on C and C++ code.

Debugging features assist in the diagnosis of errors
that are found.

CodeMedic, developed by NewPlanet Software
(www.newplaneisoﬁware.com/ medic/), provides a
graphical interface for the standard UNIX debugger,
gdb, and implements its most important features. gdb
currently supports C/C+ +, Java, PalmOS, various
embedded systems, assembly language, FORTRAN,
and Modula-2.

BugCollector Pro, developed by Nesbitt Software Corp.
{www.nesbitt.com/), implements a multiuser database
that assists a software team in keeping track of
reported bugs and other maintenance requests and
managing debugging workflow.

GNATS, a freeware application

{www.gnu.org/software/gnats/), is a set of tools for

tracking bug reports. /

The people factor. Any discussion of debugging approaches and tools is incom-
plete without mention of a powerful ally—other people! A fresh viewpoint, un-
clouded by hours of frustration, can do wonders.? A final maxim for debugging might
be: When all else fails, get help!

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

5 The concept of pair programming (recommended as part of the Extreme Programming process
model discussed in Chapter 4) provides a mechanism for “debugging” as the software is designed
and coded.
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13.7.4 Correcting the Error

Once a bug has been found, it must be corrected. But, as we have already noted, the
correction of a bug can introduce other errors and therefore do more harm than
good. Van Vleck [VAN89] suggests three simple questions that every software engi-
neer should ask before making the “correction” that removes the cause of a bug:

1. Is the cause of the bug reproduced in another part of the program? In many situ-
ations, a program error is caused by an erroneous pattern of logic that may
be reproduced elsewhere. Explicit consideration of the logical pattern may
result in the discovery of other errors. :

2. What “next bug” might be introduced by the fix that I'm about to make? Before
the correction is made, the source code (or, better, the design) should be
evaluated to assess coupling of logic and data structures. If the correction is
to be made in a highly coupled section of the program, special care must be
taken when any change is made.

3. What could we have done to prevent this bug in the first place? This question is
the first step toward establishing a statistical software quality assurance ap-
proach (Chapter 26). If we correct the process as well as the product, the bug
will be removed from the current program and may be eliminated from all fu-
ture programs.

Software testing accounts for the largest percentage of technical effort in the soft-
ware process. Yet we are only beginning to understand the subtleties of systematic
test planning, execution, and control.

The objective of software testing is to uncover errors. To fulfill this objective, a se-
ries of test steps—unit, integration, validation, and system tests—are planned and
executed. Unit and integration tests concentrate on functional verification of a com-
ponent and incorporation of components into the software architecture. validation

“testing demonstrates traceability to software requirements, and system testing vali-

dates software once it has been incorporated into a larger system.

Each test step is accomplished through a series of systematic test techniques that
assist in the design of test cases. With each testing step, the level of abstraction with
which software is considered is broadened.

Unlike testing (a systematic, planned activity), debugging must be viewed as an art.
Beginning with a symptomatic indication of a problem, the debugging activity must
track down the cause of an error. Of the many resources available during debugging,
the most valuable is the counsel of other members of the software engineering staff.

The requirement for higher-quality software demands a more systematic ap-
proach to testing. To quote Dunn and Ullman [DUN82],
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What is required is an overall strategy, spanning the strategic test space, quite as delib-
erate in its methodology as was the systematic development on which analysis, design
and code were based.

In this chapter, we have examined the strategic test space, considering the steps
that have the highest likelihood of meeting the overriding test objective: to find and
remove errors in an orderly and effective manner.
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13.1. List some problems that might be associated with the creation of an independent test
group. Are an ITG and an SQA group made up of the same people?

13.2. Using your own words, describe the difference between verification and validation. Do
both make use of test case design methods and testing strategies?
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13.3. Why is a highly coupled module difficult to unit test?

13.4. Who should perform the validation test—the software developer or the software user?
Justify your answer.

13.5. Is it always possible to develop a strategy for testing software that uses the sequence of
testing steps described in Section 13.1.3? What possible complications might arise for embed-
ded systems?

13.6. As a class project, develop a Debugging Guide for your installation. The guide should pro-
vide language and system-oriented hints that have been learned through the school of hard
knocks! Begin with an outline of topics that will be reviewed by the class and your instructor. Pub-
lish the guide for others in your local environment.

13.7. How can project scheduling affect integration testing?

13.8. The concept of “antibugging” (Section 13.3.1) is an extremely effective way to provide
built-in debugging assistance when an error is uncovered:

a. Develop a set of guidelines for antibugging.
b. Discuss advantages of using the technique.
c. Discuss disadvantages of using the technique.

13.9. Develop a complete test strategy for the SafeHome system discussed throughout this
book. Document it in a Test Specification.

13.10. Is unit testing possible or even desirable in all circumstances? Provide examples to jus-
tify your answer.

Virtually every book on software testing discusses strategies along with methods for test case
design. Craig and Kaskiel (Systematic Software Testing, Artech House, 2002), Tamres (introduc-
ing Software Testing, Addison-Wesley, 2002), Whittaker (How to Break Software, Addison-Wesley,
2002), Jorgensen (Software Testing: A Craftman’s Approach, CRC Press, 2002), Splaine and his col-
leagues (The Web Testing Handbook, Software Quality Engineering Publishing, 2001), Patton
(Software Testing, Sams Publishing, 2000), Kaner and his colleagues (Testing Computer Software,
second edition, Wiley, 1999) all discuss testing principles, concepts, strategies and methods.
Books by Black (Managing the Testing Process, Microsoft Press, 1999) and Perry (Surviving the Top
Ten Challenges of Software Testing: A People-Oriented Approach, Dorset House, 1997) also address
software testing strategies.

For those readers with interest in agile software development methods, Crispin and House
(Testing Extreme Programming, Addison-Wesley, 2002) and Beck (Test Driven Development: By
Example, Addison-Wesley, 2002) present testing strategies and tactics for Extreme Program-
ming. Kamer and his colleagues (Lessons Learned in Software Testing, Wiley, 2001) present a col-
lection of over 300 pragmatic “lessons” (guidelines) that every software tester should learn.
Watkins (Testing IT: An Off-the Shelf Testing Process, Cambridge University Press, 2001) estab-
lishes an effective testing framework for all types of developed and acquired software.

Lewis (Software Testing and Continuous Quality Improvement, CRC Press, 2000) and Koomen
and his colleagues (Test Process Improvement, Addison-Wesley, 1999) discuss strategies for con-
tinuously improving the testing process.

Sykes and McGregor (Practical Guide to Testing Object-Oriented Software, Addison-Wesley,
2001), Bashir and Goel (Testing Object-Oriented Software, Springer-Verlag, 2000), Binder (Testing
Object-Oriented Systems, Addison-Wesley, 1999), Kung and his colleagues (Testing Object-
Oriented Software, IEEE Computer Society Press, 1998), and Marick (The Craft of Software Test-
ing, Prentice-Hall, 1997) present strategies and methods for testing OO systems.

Guidelines for debugging are contained in a books by Agans (Debugging: The Nine Indis-
pensable Rules for Finding Even the Most Elusive Hardware and Software Problems, AMACON,
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2002), Tells and Hsieh (The Science of Debugging, The Coreolis Group, 2001), Robbins (Debug-
ging Applications, Microsoft Press, 2000), and Dunn (Software Defect Removal, McGraw-Hill,
1984). Rosenberg (How Debuggers Work, Wiley, 1996) addresses the technology for debugging
tools. Younessi (Object-Oriented Defect Management of Software, Prentice-Hall, 2002) presents
techniques for managing defects that are encountered in object-oriented systems. Beizer
[BEI84] presents an interesting “taxonomy of bugs” that can lead to effective methods for test
planning. Ball (Debugging Embedded Microprocessor Systems, Newnes Publishing, 1998) ad-
dresses the special nature of debugging for embedded microprocessor software.

A wide variety of information sources on software testing strategies are available on the In-
ternet. An up-to-date list of World Wide Web references that are relevant to software testing
strategies can be found at the SEPA Web site:
http://www.mhhe.com/pressman.
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Key esting presents an interesting anomaly for the software engineers, who by
CONCEPTS their nature are constructive people. Testing requires that the developer
BVA discard preconceived notions of the “correctness” of software just devel-
cydometic oped and then work hard to design test cases to “break” the software. Beizer
complexity [BEI90] describes this situation effectively when he states:
oqeivelonce There's a myth that if we ‘were really good at programming, there would be no bugs
partiiosieg to catch. If only we could really concentrate, if only everyone used structured pro-
flow grophs gramming, top-down design, decision tables, if programs were written in SQUISH, if
potterns we had the right silver bullets, then there would be no bugs. So goes the myth. There
testability are bugs, the myth says, because we are bad at what we do; and if we are bad at it,
testing we should feel guilty about it. Therefore, testing and test case design is an admission
basis path of failure, which instills a goodly dose of guilt. And the tedium of testing is just pun-
black-box ishment for our errors. Punishment for what? For being human? Guilt for what? For
dass-level failing to achieve inhuman perfection? For not distinguishing between what another
controbstracture programmer thinks and what he says? For failing to be telepathic? For not solving hu-
folt-basod man communications problems that have been kicked around . . . for forty centuries?
loops Should testing instill guilt? Is testing really destructive? The answer to these ques-
object-oriented tions is No!
to-based In this chapter, we discuss techniques for software test case design. Test case
white-box design focuses on a set of techniques for the creation of test cases that meet over-

all testing objectives and the testing strategies discussed in Chapter 13.

‘ mﬁnmpuim\dmﬂpwdonmns of the
uncover errors in program function,
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of effort and time.
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tﬂtemd ic, inter-
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obyed-onented owm‘ﬁl@ﬂs
prior o the existence of source cods, but
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examine whether errors exist as
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to form a subsystem, use-based # ;-along
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Fundamental testing goals and principles were discussed in Chapter 5. Recall that
the goal of testing is to find errors and that a good test is one that has a high proba-
bility of finding an error. Therefore, a software engineer should design and imple-
ment a computer-based system or a product with “testability” in mind. At the same
time, the tests themselves must exhibit a set of characteristics that achieve the goal
of finding the most errors with a minimum of effort.

ry progrom does something righ; it just may not be the thing we want it to do.”

Author mknown

Testability. James Bach' provides the following definition for testability: “Software
testability is simply how easily [a computer program] can be tested.” The following
characteristics lead to testable software.

B What are the Operability. “The better it works, the more efficiently it can be tested.” If a

& choracteris- system is designed and implemented with quality in mind, relatively few bugs

tics of testability?  will block the execution of tests, allowing testing to progress without fits and
g g lo prog

starts.

1 The paragraphs that follow are used with permission of James Bach (copyright 1994) and have been
adapted from material that originally appeared in a posting in the newsgroup comp.software-eng.
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Observability. “What you see is what you test.” Inputs provided as part of test-
ing produce distinct outputs. System states and variables are visible or queriable
during execution. Incorrect output is easily identified. Internal errors are automati-
cally detected and reported. Source code is accessible.

Controllability. “The better we can control the software; the more the testing
can be automated and optimized.” Software and hardware states and variables can
be controlled directly by the test engineer. Tests can be conveniently specified, au-
tomated, and reproduced.

Decomposability. “By controlling the scope of testing, we can more quickly
isolate problems and perform smarter retesting.” The software system is built from
independent modules that can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.” The pro-
gram should exhibit functional simplicity (e.g., the feature set is the minimum nec-
essary to meet requirements), structural simplicity (e.g., architecture is modularized
to limit the propagation of faults), and code simplicity (e.g., a coding standard is
adopted for ease of inspection and maintenance).

Stability. “The fewer the changes, the fewer the disruptions to testing.”
Changes to the software are infrequent, controlled when they do occur, and do not
invalidate existing tests. The software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.”
The architectural design and the dependencies between internal, external, and
shared components are well understood. Technical documentation is instantly ac-
cessible, well organized, specific and detailed, and accurate. Changes to the design
are communicated to testers.

The attributes suggested by Bach can be used by a software engineer to develop a soft-
ware configuration (i.e., programs, data, and documents) that is amenable to testing.

n, more pervasive, and more troublesome in software then with other toch

Test characteristics. And what about the tests themselves? Kaner, Falk, and
Nguyen [KAN93] suggest the following attributes of a “good” test:

1.. A good test has a high probability of finding an error. To achieve this goal, the
tester must understand the software and attempt to develop a mental picture
of how the software might fail. Ideally, the classes of failure are probed. For
example, one class of potential failure in a GUI (graphical user interface) is a
failure to recognize proper mouse position. A set of tests would be designed
to exercise the mouse in an attempt to demonstrate an error in mouse posi-
tion recognition.
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2. Agood test is not redundant. Testing time and resources are limited. There is
no point in conducting a test that has the same purpose as another test.
Every test should have a different purpose (even if it is subtly different).

3. A good test should be “best of breed” [KAN93]. In a group of tests that have a
similar intent, time and resource limitations may mitigate toward the execu-
tion of only a subset of these tests. In such cases, the test that has the highest
likelihood of uncovering a whole class of errors should be used.

4. Agood test should be neither too simple nor too complex. Although it is some-
times possible to combine a series of tests into one test case, the possible
side effects associated with this approach may mask errors. In general, each
test should be executed separately.

SAFEHOME

much all possibilities

! ’9‘ ‘ »

Any engineered product (and most other things) can be tested in one of two ways:
(1) Knowing the specified function that a product has been designed to perform, tests
can be conducted that demonstrate each function is fully operational while at the
same time searching for errors in each function; (2) knowing the internal workings
of a product, tests can be conducted to ensure that “all gears mesh”; that is, internal
operations are performed according to specifications, and all internal components
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White-box tests can be
designed only after
componentdevel design
(or source code)

exists. The logical
detuils of the progrom
must be available.

Exhaustive Testing

Consider the 100-line program in the exists) has been developed for exhaustive testing. The
language C. After some basic data declaration,  processor can develop a test case, execute it, and evaluate
the program contains two nested loops that execute from 1 the results in one millisecond. Working 24 hours a day,

to 20 times each, depending on conditions specified at 365 days a year, the processor would work for 3170
input. Inside the interior loop, four if-then-else constructs years to fest the program. This would, undeniably, cause
are required. There are approximately 10' possible paths havoc in most development schedules.
that may be executed in this program! Therefore, it is reasonable to assert that exhaustive
To put this number into perspective, we assume that a testing is impossible for large software systems.
ngic test processor {“magic” because no such processor j
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have been adequately exercised. The first test approach is called black-box testing
and the second, white-box testing.?

Black-box testing alludes to tests that are conducted at the software interface. A
black-box test examines some fundamental aspect of a system with little regard for
the internal logical structure of the software. White-box testing of software is predi-
cated on close examination of procedural detail. Logical paths through the software
and collaborations between components are tested by providing test cases that ex-
ercise specific sets of conditions and/or loops.

obe nile in designing test cases: cover all features, but do not make foo many fest cases.

At first glance it would seem that very thorough white-box testing would lead to
100 percent correct programs. All we need to do is identify all logical paths, develop
test cases to exercise them, and evaluate results, that is, generate test cases to ex-
ercise program logic exhaustively. Unfortunately, exhaustive testing presents certain
logistical problems (see the sidebar discussion). White-box testing should not, how-
ever, be dismissed as impractical. A limited number of important logical paths can
be selected and exercised. Important data structures can be probed for validity.

"White-box testing, sometimes called glass-box testing, is a test case design philosophy
that uses the control structure described as part of component-level design to derive
test cases. Using white-box testing methods, the software engineer can derive test
cases that (1) guarantee that all independent paths within a module have been ex-

2 The terms functional testing and structural testing are sometimes used in place of black-box and
white-box testing, respectively.
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ercised at least once, (2) exercise all logical decisions on their true and false sides,
(3) execute all loops at their boundaries and within their operational bounds, and
(4) exercise internal data structures to ensure their validity.

Ht in comers ond congregate af boundaries.”

CovaP
A flow graph should be
drawn only when the
logical structure of 0
component is complex.
The flow graph allows
you fo frace progrom
paths more readiy.

Basis path testing is a white-box testing technique first proposed by Tom McCabe
[MCC76]. The basis path method enables the test case designer to derive a logical
complexity measure of a procedural design and use this measure as a guide for defin-
ing a basis set of execution paths. Test cases derived to exercise the basis set are guar-
anteed to execute every statement in the program at least one time during testing.

14.4.1 Flow Graph Notation

Before the basis path method can be introduced, a simple notation for the represen-
tation of control flow, called a flow graph (or program graph) must be introduced.?
The flow graph depicts logical control flow using the notation illustrated in Figure
14.1. Each structured construct (Chapter 11) has a corresponding flow graph symbol.

To illustrate the use of a flow graph, we consider the procedural design represen-
tation in Figure 14.2a. Here, a flowchart is used to depict program control structure.
Figure 14.2b maps the flowchart into a corresponding flow graph (assuming that no
compound conditions are contained in the decision diamonds of the flowchart). Re-
ferring to Figure 14.2b, each circle, called a flow graph node, represents one or more
procedural statements. A sequence of process boxes and a decision diamond can
map into a single node. The arrows on the flow graph, called edges or links, represent

W The structured constructs in flow graph form:

Flow graph
notation

Sequence If While Until

Where each circle represents one or more
nonbranching PDL or source code statements

3 Inactuality, the basis path method can be conducted without the use of flow graphs. However, they
serve as a useful notation for understanding control flow and illustrating the approach.
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m (a) Flowchart and (b) flow graph

Edge

flow of control and are analogous to flowchart arrows. An edge must terminate at a
node, even if the node does not represent any procedural statements (e.g., see the
flow graph symbol for the if-then-else construct in Figure 14.1). Areas bounded by
edges and nodes are called regions. When counting regions, we include the area out-
side the graph as a region.*

When compound conditions are encountered in a procedural design, the gener-
ation of a flow graph becomes slightly more complicated. A compound condition
occurs when one or more Boolean operators (logical OR, AND, NAND, NOR) is
present in a conditional statement. Referring to Figure 14.3, the PDL segment
translates into the flow graph shown. Note that a separate node is created for each
of the conditions a and b in the statement IF a OR b. Each node that contains a con-
dition is calied a predicate node and is characterized by two or more edges ema-
nating from it. '

14.4.2 Independent Program Paths

An independent path is any path through the program that introduces at least one
new set of processing statements or a new condition. When stated in terms of a flow
graph, an independent path must move along at least one edge that has not been
traversed before the path is defined. For example, a set of independent paths for the
flow graph illustrated in Figure 14.2b is:

path1: 1-11
path 2: 1-2-3-4-5-10-1-11

4 A more detailed discussion of graphs and their uses is presented in Section 14.6.1.
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o be error prone. Use
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Predicate

node \

IFaORb
then procedure x

else procedure y
ENDIF

path3:  1-2-3-6-8-9-10-1-11
path4:  1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path
1-2-3-4-5-10-1-2-3-6-8-9-10-1-11

is not considered to be an independent path because it is simply a combination of al-
ready specified paths and does not traverse any new edges. ‘

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Figure 14.2b. That
is, if tests can be designed to force execution of these paths (a basis set), every state-
ment in the program will have been guaranteed to be executed at least one time, and
every condition will have been executed on its true and false sides. It should be noted
that the basis set is not unique. In fact, a number of different basis sets can be de-
rived for a given procedural design.

How do we know how many paths to look for? The computation of cyclomatic
complexity provides the answer. Cyclomatic complexity is a software metric that pro-
vides a quantitative measure of the logical complexity of a program. When used in
the context of the basis path testing method, the value computed for cyclomatic
complexity defines the number of independent paths in the basis set of a program
and provides us with an upper bound for the number of tests that must be conducted
to ensure that all statements have been executed at least once.

Cyclomatic complexity has a foundation in graph theory and is computed in one
of three ways:

1. The number of regions corresponds to the cyclomatic complexity.
2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as
VG)=E-N+2

where E is the number of flow graph edges, and N is the number of flow
graph nodes.
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:&& 3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as
POINT VIG) = P+ 1

Cyclomatic complexity where P is the number of predicate nodes contained in the flow graph G.

provides the upper

bound on the number Referring once more to the flow graph in Figure 14.2b, the cyclomatic complexity

of test cases thatwill  can be computed using each of the algorithms just noted:

be required fo

guorantee that every 1. The flow graph has four regions.

shlemert i e 2. V(G) = 11 edges — 9 nodes + 2 = 4.

progrom hos been

executed ot least one 3. V(G) = 3 predicate nodes + 1 = 4.

time.

More important, the value for V(G) provides us with an upper bound for the num-
ber of independent paths that form the basis set and, by implication, an upper bound
on the number of tests that must be designed and executed to guarantee coverage
of all program statements.
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14.4.3 Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source
code. In this section, we present basis path testing as a series of steps. The proce-
dure average, depicted in PDL in Figure 14.4, will be used as an example to illustrate
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m PROCEDURE average:

PDL with

od * This procedure computes the average of 100 or fewer
P es numbers that lie between bounding values: it also computes the
identified sum and the total number valid.

INTERFACE RETURNS average, total.input, total.valid;
INTERFACE ACCEPTS value, minimum, maximum;

TYPE value[1:100] IS 8CALAR ARRAY;
TYPE average, total.input, total.valid;

minimum, maximum, sum I8 8CALAR:
TYPE i 18 INTEGER:

i=n
, {Mal.inpm = total.vaiid = 0; 2

sum = 0;
DO WHILE value[l] <> -998 AND total.input < 100 8
4 increment total.input by 1;
IF valus[i] > = minimum AND vslue[i] < = maximum @
&~ ( THEN increment total.valid by 1:
7 sum = g sum + valuefi]
ELSE skip

po ENDIF
’ increment i by 1;

8 ENDDO
IF totel.valid > 0 10
# THEN average = sum / total.valid;
2 —s F16E average = —099;
13 enDIF
END average

each step in the test case design method. Note that average, although an extremely
simple algorithm, contains compound conditions and loops. The following steps can
be applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding flow
graph. A flow graph is created using the symbols and construction rules pre-
sented in Section 14.4.1. Referring to the PDL for average in Figure 144, a
flow graph is created by numbering those PDL statements that will be
mapped into corresponding flow graph nodes. The corresponding flow graph
is in Figure 14.5.

2. Determine the cyclomatic complexity of the resultant flow graph. The
cyclomatic complexity, V(G), is determined by applying the algorithms de-
scribed in Section 14.4.2. It should be noted that V(G) can be determined
without developing a flow graph by counting all conditional statements in
the PDL (for the procedure average, compound conditions count as two) and
adding 1. Referring to Figure 14.5,

V(G) = 6 regions
V(G) = 17 edges —~13nodes + 2 = 6
V(G) = 5 predicate nodes + 1 = 6

"o onr i human, o find a bug s divine”
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Flow graph for
the procedure

average

3. Determine a basis set of linearly independent paths. The value of

V(G) provides the number of linearly independent paths through the pro-
gram control structure. In the case of procedure average, we expect to
specify six paths:

path1:  1-2-10-11-13

path 2: 1-2-10-12-13

path 3: 1-2-3-10-11-13

path 4:  1-2-3-4-5-8-9-2-. ..

path 5: 1-2-3-4-5-6-8-9-2-. ..

path6:  1-2-3-4-5-6-7-8-9-2-. ..

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through
the remainder of the control structure is acceptable. It is often worthwhile to

identify predicate nodes as an aid in the derivation of test cases. In this case,
nodes 2, 3, 5, 6, and 10 are predicate nodes.

. Prepare test cases that will force execution of each path in the basis

set. Data should be chosen so that conditions at the predicate nodes are ap-
propriately set as each path is tested. Each test case is executed and compared
to expected results. Once all test cases have been completed, the tester can be
sure that all statements in the program have been executed at least once.

It is important to note that some independent paths (e.g., path 1 in our example)
cannot be tested in stand-alone fashion. That is, the combination of data required to
traverse the path cannot be achieved in the normal flow of the program. In such
cases, these paths are tested as part of another path test.
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Graph matrix

Connected to

Flow graph Graph matrix

14.4.4 Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths
is amenable to mechanization. To develop a software tool that assists in basis path
testing, a data structure, called a graph matrix, can be quite useful.

A graph matrix is a square matrix whose size (i.e., number of rows and columns)
is equal to the number of nodes on the flow graph. Each row and column corre-
sponds to an identified node, and matrix entries correspond to connections (an edge)
between nodes. A simple example of a flow graph and its corresponding graph ma-
trix [BEI90] is shown in Figure 14.6.

Referring to the figure, each node on the flow graph is identified by numbers, while
each edge is identified by letters. A letter entry is made in the matrix to correspond to a
connection between two nodes. For example, node 3 is connected to node 4 by edge b.

& What is a To this point, the graph matrix is nothing more than a tabular representation of a
graph flow graph. However, by adding a link weight to each matrix entry, the graph matrix
matrix, andhow  can become a powerful tool for evaluating program control structure during testing.
;I:r::eei:'le:sdﬁ:g? The link weight provides additional information about control flow. In its simplest
form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But

link weights can be éssigned other, more interesting properties:

e The probability that a link (edge) will be executed.

e The processing time expended during traversal of a link.

e The memory required during traversal of a link.

e The resources required during traversal of a link.

Beizer [BEI90] provides a thorough treatment of additional mathematical algo-

rithms that can be applied to graph matrices. Using these techniques, the analysis re-
quired to design test cases can be partially or fully automated.

g mere.altention o running tests than to designing them is a classic mistake.”
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Errors are much more
common in the
neighborhood of
logical condifions than
they are in the locus of
sequential processing
statements.

The basis path testing technique described in Section 14.4 is one of a number of
techniques for control structure testing. Although basis path testing is simple and ef-
fective, it is not sufficient in itself. In this section, variations on control structure test-
ing are discussed briefly. These broaden testing coverage and improve quality of
white-box testing.

14.5.1 Condition Testing

Condition testing [TAI89] is a test case design method that exercises the logical con-
ditions contained in a program module. A simple condition is a Boolean variable or a
relational expression, possibly preceded with one NOT (-) operator. A relational ex-
pression takes the form

E, <relational-operator> E,

where E, and E, are arithmetic expressions and <relational-operators is one of the
following: <, =, =, # (nonequality), >, or =. A compound condition is composed of
two or more simple conditions, Boolean operators, and parentheses. We assume
that Boolean operators allowed in a compound condition include OR (1), AND (&)
and NOT (-). A condition without relational expressions is referred to as a Boolean
expression. Therefore, the possible types of elements in a condition include a
Boolean operator, a Boolean variable, a pair of parentheses (surrounding a simple or
compound Boolean condition), a relational operator, or an arithmetic expression.

If a condition is incorrect, then at least one component of the condition is incor-
rect. Therefore, types of errors in a condition include Boolean operator errors
(incorrect/missing/extra Boolean operators), Boolean variable errors, Boolean
parenthesis errors, relational operator errors, and arithmetic expression errors. The
condition testing method focuses on testing each condition in the program to ensure
that it does not contain errors.

14.5.2 Data Flow Testing

The data flow testing method selects test paths of a program according to the loca-
tions of definitions and uses of variables in the program.To illustrate the data flow
testing approach, assume that each statement in a program is assigned a unique
statement number and that each function does not modify its parameters or global
variables. For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of X}
USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based
on the condition of statement S. The definition of variable X at statement S is said to
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be live at statement S’ if there exists a path from statement S to statement S’ that
contains no other definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S’], where Sand S’ are
statement numbers, X is in DEF(S) and USE(S’), and the definition of X in statement
Sis live at statement S".

One simple data flow testing strategy is to require that every DU chain be covered
at least once. We refer to this strategy as the DU testing strategy. It has been shown
that DU testing does not guarantee the coverage of all branches of a program. How-
ever, a branch is not guaranteed to be covered by DU testing only in rare situations
such as if-then-else constructs in which the then part has no definition of any vari-
able and the else part does not exist. In this situation, the else branch of the if state-
ment is not necessarily covered by DU testing. A number of data flow testing
strategies have been studied and compared (e.g., [FRA88], [NTA88], [FRA93]). The in-
terested reader is urged to consider these other references.

mmmﬁm *something funny’ and acling on it.”

14.5.3 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in soft-
ware. And yet, we often pay them little heed while conducting software tests.

Loop testing is a white-box testing technique that focuses exclusively on the va-
lidity of loop constructs. Four different classes of loops [BEI90] can be defined: sim-
ple loops, concatenated loops, nested loops, and unstructured loops (Figure 14.7).

Ficure 14.7

Classes of
loops
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Nested loops

Simple loops A

Concatenated
loops

Unstructured
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Simple loops. The following set of tests can be applied to simple loops, where n
is the maximum number of allowable passes through the loop.

Skip the loop entirely.

Only one pass through the loop.

Two passes through the loop.

m passes through the loop where m < n.

e W N =

n - 1,n, n+ 1 passes through the loop.

Nested loops. If we were to extend the test approach for simple loops to nested
loops, the number of possible tests would grow geometrically as the level of nesting
increased. This would result in an impractical number of tests. Beizer [BEI90] sug-
gests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer
loops at their minimum iteration parameter (e.g., loop counter) values. Add
other tests for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer
loops at minimum values and other nested loops to “typical” values.

4. Continue until all loops have been tested.

Concatenated loops. Concatenated loops can be tested using the approach de-
fined for simple loops, if each of the loops is independent of the other. However, if
two loops are concatenated and the loop counter for loop 1 is used as the initial value
for loop 2, then the loops are not independent. When the loops are not independent,
the approach applied to nested loops is recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned
to reflect the use of the structured programming constructs (Chapter 11).

Black-box testing, also called behavioral testing, focuses on the functional require-
ments of the software. That is, black-box testing enables the software engfrieer to
derive sets of input conditions that will fully exercise all functional requirements for
a program. Black-box testing is not an alternative to white-box techniques. Rather,
it is a complementary approach that is likely to uncover a different class of errors
than white-box methods.

Black-box testing attempts to find errors in the following categories: (1) incorrect or
missing functions, (2) interface errors, (3) errors in data structures or external data base
access, (4) behavior or performance errors, and (5) initialization and termination errors.
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Unlike white-box testing, which is performed early in the testing process, black-
box testing tends to be applied during later stages of testing (see Chapter 13). Be-
cause black-box testing purposely disregards control structure, attention is focused
on the information domain. Tests are designed to answer the following questions:

¢ How is functional validity tested?

e How are system behavior and performance tested?

e What classes of input will make good test cases?

o Is the system particularly sensitive to certain input values?
o How are the boundaries of a data class isolated?

e What data rates and data volume can the system tolerate?

o What effect will specific combinations of data have on system operation?

By applying black-box techniques, we derive a set of test cases that satisfy the fol-
lowing criteria [MYE79]: (1) test cases that reduce, by a count that is greater than one,
the number of additional test cases that must be designed to achieve reasonable test-
ing, and (2) test cases that tell us something about the presence or absence of classes
of errors, rather than an error associated only with the specific test at hand.

14.6.1 Graph-Based Testing Methods

The first step in black-box testing is to understand the objects® that are modeled in
software and the relationships that connect these objects. Once this has been ac-
complished, the next step is to define a series of tests that verify “all objects have the
expected relationship to one another” [BEI95]. Stated in another way, software test-
ing begins by creating a graph of important objects and their relationships and then
devising a series of tests that will cover the graph so that each object and relation-
ship is exercised and errors are uncovered.

To accomplish these steps, the software engineer begins by creating a graph—a
collection of nodes that represent objects; links that represent the relationships be-
tween objects; node weights that describe the properties of a node (e.g., a specific
data value or state behavior); and link weights that describe some characteristic of
a link. A

The symbolic representation of a graph is shown in Figure 14.8a. Nodes are rep-
resented as circles connected by links that take a number of different forms. A di-
rected link (represented by an arrow) indicates that a relationship moves in only one
direction. A bidirectional link, also called a symmetric link, implies that the relation-
ship applies in both directions. Parallel links are used when a number of different re-
lationships are established between graph nodes.

5 Inthis context, we consider the term “objects” in the broadest possible context. It encompasses data
objects, traditional components (modules), and object-oriented elements of computer software.
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Ficure 14.8
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As a simple example, consider a portion of a graph for a word-processing appli-
cation (Figure 14.8b) where

Object #1 = newFile (menu selection)
Object #2 = documentWindow

Object #3 = documentText

Referring to the figure, a menu select on newFile generates a document window.
The node weight of documentWindow provides a list of the window attributes
that are to be expected when the window is generated. The link weight indicates
that the window must be generated in less than 1.0 second. An undirected link es-
tablishes a symmetric relationship between the newFile menu selection and doc-
umentText, and parallel links indicate relationships between documentWindow
and documentText. In reality, a far more detailed graph would have to be gener-
ated as a precursor to test case design. The software engineer then derives test
cases by traversing the graph and covering each of the relationships shown. These
test cases are designed in an attempt to find errors in any of the relationships.

Beizer [BEI95] describes a number of behavioral testing methods that can make
use of graphs:-

Transaction flow modeling. The nodes represent steps in some transaction (e.g.,
the steps required to make an airline reservation using an on-line service), and the
links represent the logical connection between steps. The data flow diagram
(Chapter 8) can be used to assist in creating graphs of this type.
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Finite state modeling. The nodes represent different user observable states of
the software (e.g., each of the “screens” that appear as an order entry clerk takes a
phone order), and the links represent the transitions that occur to move from state
to state. The state diagram (Chapter 8) can be used to assist in creating graphs of
this type.

Data flow modeling. The nodes are data objects, and the links are the transfor-
mations that occur to translate one data object into another. For example, the node
FICA tax withheld (FTW) is computed from gross wages (GW) using the rela-
tionship, FTW = 0.62 x GW.

Timing modeling. The nodes are program objects, and the links are the sequen-
tial connections between those objects. Link weights are used to specify the re-
quired execution times as the program executes.

A detailed discussion of each of these graph-based testing methods is beyond the
scope of this book. The interested reader should see [BEI95] for comprehensive
coverage.

14.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain
of a program into classes of data from which test cases can be derived. An ideal test
case single-handedly uncovers a class of errors (e.g., incorrect processing of all char-
acter data) that might otherwise require many cases to be executed before the gen-
eral error is observed. Equivalence partitioning strives to define a test case that
uncovers classes of errors, thereby reducing the total number of test cases that must
be developed.

Test case design for equivalence partitioning is based on an evaluation of equiv-
alence classes for an input condition. Using concepts introduced in the preceding
section, if a set of objects can be linked by relationships that are symmetric, transi-
tive, and reflexive, an equivalence class is present [BEI95]. An equivalence class rep-
resents a set of valid or invalid states for input conditions. Typically, an input
condition is either a specific numeric value, a range of values, a set of related values,
or a Boolean condition. Equivalence classes may be defined according to the fol-
lowing guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence
classes are defined.

2. If an input condition requires a specific value, one valid and two invalid
equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid
equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.
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By applying these guidelines for the derivation of equivalence classes, test cases
for each input domain data object can be developed and executed. Test cases are
selected so that the largest number of attributes of an equivalence class are exer-
cised at once.

14.6.3 Boundary Value Analysis

A greater number of errors occurs at the boundaries of the input domain rather than
in the “center.” 1t is for this reason that boundary value analysis (BVA) has been de-
veloped as a testing technique. BVA leads to a selection of test cases that exercise
bounding values.

Boundary value analysis is a test case design technique that complements equiva-
lence partitioning. Rather than selecting any element of an equivalence class, BVA
leads to the selection of test cases at the “edges” of the class. Rather than focusing
solely on input conditions, BVA derives test cases from the output domain as well
[MYE79].

Guidelines for BVA are similar in many respects to those provided for equivalence
partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases
should be designed with values a and b as well as just above and just below
aand b.

2. If an input condition specifies a number of values, test cases should be devel-
oped that exercise the minimum and maximum numbers. Values just above
and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a
temperature vs. pressure table is required as output from an engineering
analysis program. Test cases should be designed to create an output report
that produces the maximum (and minimum) allowable number of table
entries.

4. If internal program data structures have prescribed boundaries (e.g., an array
has a defined limit of 100 entries), be certain to design a test case to exercise
the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying these
guidelines, boundary testing will be more complete, thereby having a higher likeli-
hood for error detection.

¢ 5 racket blew up on lift-off due solely 1o a software defect (a bug) involving the conversion of o
‘point value info o 16-bit integer. The rocket and its four satellites were uninsured and worth $500
rehonsive sysiem test would have found the bug but was vetoed for budgetary reasons.”

A news
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14.6.4 Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That
is, the number of input parameters is small and the values that each of the pa-
rameters may take are clearly bounded. When these numbers are very small (e.g.,
three input parameters taking on three discrete values each), it is possible to con-
sider every input permutation and exhaustively test processing of the input do-
main. However, as the number of input values grows and the number of discrete
values for each data item increases, exhaustive testing becomes impractical or im-
possible.

Orthogonal array testing can be applied to problems in which the input domain
is relatively small but too large to accommodate exhaustive testing. The orthogo-
nal array testing method is particularly useful in finding errors associated with re-
gion faults—an error category associated with faulty logic within a software
component.

To illustrate the difference between orthogonal array testing and more conven-
tional “one input item at a time” approaches, consider a system that has three input
items, X, Y, and Z. Each of these input items has three discrete values associated with
it. There are 3° = 27 possible test cases. Phadke [PHA97] suggests a geometric view
of the possible test cases associated with X, ¥, and Z illustrated in Figure 14.9. Refer-
ring to the figure, one input item at a time may be varied in sequence along each in-
put axis. This results in relatively limited coverage of the input domain (represented
by the left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is cre-
ated. The L9 orthogonal array has a “balancing property [PHA97].” That is, test cases
(represented by blue dots in the figure) are “dispersed uniformly throughout the test
domain,” as illustrated in the right-hand cube in Figure 14.9. Test coverage across
the input domain is more complete.

A geometric
view of test
cases [PHA97]

N—>

~ ~

Y Y
X —> X —>

One input item at a time L9 orthogonal array
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To illustrate the use of the L9 orthogonal array, consider the send function for a
fax application. Four parameters, P1, P2, P3, and P4, are passed to the send function.
Each takes on three discrete values. For example, P1 takes on values:

Pl = 1, send it now
P1 = 2, send it one hour later
P1 = 3, send it after midnight

P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send
functions.

If a “one input item at a time” testing strategy were chosen, the following se-
quence of tests (P1, P2, P3, P4) would be specified: (1, 1,1, 1), (2,1, 1, 1), (3, 1, 1, 1),
1,2,1,1),(1,3,1,1),(1,1,2,1),(1,1,3,1),(1,1,1,2),and (1, 1, 1, 3). Phadke [PHA97]
assesses these test cases by stating:

Such test cases are useful only when one is certain that these test parameters do not in-
teract. They can detect logic faults where a single parameter value makes the software
malfunction. These faults are called single mode faults. This method cannot detect logic
faults that cause malfunction when two or more parameters simultaneously take certain
values; that is, it cannot detect any interactions. Thus its ability to detect faults is limited.

Given the relatively small number of input parameters and discrete values, exhaus-
tive testing is possible. The number of tests required is 3* = 81, large, but manage-
able. All faults associated with data item permutation would be found, but the effort
required is relatively high.

The orthogonal array testing approach enables us to provide good test coverage
with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for the
fax send function is illustrated in Figure 14.10.
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Phadke [PHA97] assesses the result of tests using the L9 orthogonal array in the

following manner:

Detect and isolate all single mode faults. A single mode fault is a consistent problem
with any level of any single parameter. For example, if all test cases of factor P1 = 1 cause
\\an error condition, it is a single mode failure. In this example, tests 1, 2, and 3 [Figure
< M4.10] will show errors. By analyzing the information about which tests show errors, one
can identify which parameter values cause the fault. In this example, by noting that tests
1,2, and 3 cause an error, one can isolate flogical processing associated with “send it now”
(P1 = 1)] as the source of the error. Such an isolation of fault is important to fix the fault.

Detect all double mode faults. If there exists a consistent problem when specific
levels of two parameters occur together, it is called a double mode fault. Indeed, a double
mode fault is an indication of pairwise incompatibility or harmful interactions between
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two test parameters.

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of
only single and double mode faults. However, many multimode faults are also detected

by these tests.

A detailed discussion of orthogonal array testing can be found in [PHA89].

Test Case Design

Q

Objective: To assist the software team in

deve|oping a complete set of test cases for both
black-box and white-box testing.

Mechanics: These tools fall into two broad categories:
static testing and dynamic testing. Three different types of
static testing fools are used in the industry: code-based
testing tools, specidlized testing languages, and
requirements-based testing tools. Code-based tesfing tools
accept source code as input and perform a number of
analyses that result in the generation of fest cases.
Specialized testing languages (e.g., ATLAS) enable a
software engineer to write defailed test specifications that
describe each fest case and the logistics for its execution.
Requirements-based testing tools isolate specific user
requirements and suggest fest cases (or classes of tests)
that will exercise the requirements. Dynamic testing tools
interact with an executing program, checking path
coverage, testing assertions about the value of specific
variables, and otherwise instrumenting the execution flow

@he program.

SOFTWARE TOOLS

Representative Tools®

McCabe Test, developed by McCabe & Associates
(www.mccabe.com), implements a variety of path
testing techniques derived from an assessment of
cyclomatic complexity and other software metrics.

Panorama, developed by International Software
Automation, Inc. (www.softwareautomation.com),
encompasses a complete set of tools for object-oriented
software development including tools that assist test
case design and fest planning.

TestWorks, developed by Software Research, Inc.
{(www.soft.com/Products), is a complete set of
automated testing tools that assists in the design of test
cases for software developed in C/C+ + and Java and
provides support for regression testing.

T-Vec Test Generation System, developed by T-VEC
Technologies (www.t-vec.com), is a tool set that
supports unit, integration, and validation testing by
assisting in the design of test cases using information
contained in an OO requirements specification.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.




442

PART TWO SOFTWARE ENGINEERING PRACTICE

An excellent collection
of papers and resources
on 00 testing can be
found ot
www.rhsc.com.

The architecture of object-oriented software results in a series of layered subsystems
that encapsulate collaborating classes. Each of these system elements (subsystems
and classes) perform functions that help to achieve system requirements. It is nec-
essary to test an OO system at a variety of different levels to uncover errors that may
occur as classes collaborate with one another and subsystems communicate across
architectural layers.

Object-oriented testing is strategically similar to the testing of conventional sys-
tems, but it is tactically different. Because OO analysis and design models are similar
in structure and content to the resultant OO program, “testing” can begin with the re-
view of these models. Once code has been generated, actual OO testing begins “in
the small” with a series of tests designed to exercise class operations and examine
whether errors exist as one class collaborates with other classes. As classes are inte-
grated to form a subsystem, use-based testing, along with fault-based approaches, is
applied to fully exercise collaborating classes. Finally, use-cases are used to uncover
errors at the software validation level.

Conventional test case design is driven by an input-process-output view of soft-
watre or the algorithmic detail of individual modules. Object-oriented testing focuses
on designing appropriate sequences of operations to exercise the states of a class.

14.7.1 The Test Case Design Implications of OO Concepts

As a class evolves through the analysis and design models, it becomes a target for
test case design. Because attributes and operations are encapsulated, testing
operations outside of the class is generally unproductive. Although encapsulation is
an essential design concept for OO, it can create a minor obstacle when testing. As
Binder [BIN94] notes, “Testing requires reporting on the concrete and abstract state
of an object.” Yet, encapsulation can make this information somewhat difficult to ob-
tain. Unless built-in operations are provided to report the values for class attributes,
a snapshot of the state of an object may be difficult to acquire.

Inheritance also leads to additional challenges for the test case designer. We
have already noted that each new context of usage requires retesting, even though
reuse has been achieved. In addition, multiple inheritance’ complicates testing fur-
ther by increasing the number of contexts for which testing is required [BIN94]. If
subclasses instantiated from a superclass are used within the same problem do-
main, it is likely that the set of test cases derived for the superclass can be used
when testing the subclass. However, if the subclass is used in an entirely different
context, the superclass test cases will have little applicability and a new set of tests
must be designed.

7 An OO concept that should be used with extreme care.
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14.7.2 Applicability of Conventional Test Case Design Methods

The white-box testing methods described in earlier sections can be applied to the op-
erations defined for a class. Basis path, loop testing, or data flow techniques can help
to ensure that every statement in an operation has been tested. However, the con-
cise structure of many class operations causes some to argue that the effort applied
to white-box testing might be better redirected to tests at a class level.

Black-box testing methods are as appropriate for OO systems as they are for sys-
tems developed using conventional software engineering methods. As we noted ear-
lier in this chapter, use-cases can provide useful input in the design of black-box and
state-based tests [AMB95].

14.7.3 Fault-Based Testing®

The objective of fault-based testing within an OO system is to design tests that have
a high likelihood of uncovering plausible faults. Because the product or system must
conform to customer requirements, the preliminary planning required to perform
fault-based testing begins with the analysis model. The tester looks for plausible
faults (i.e., aspects of the implementation of the system that may result in defects).
To determine whether these faults exist, test cases are designed to exercise the de-
sign or code.

Of course, the effectiveness of these techniques depends on how testers perceive
a plausible fault. If real faults in an OO system are perceived to be implausible, then
this approach is really no better than any random testing technique. However, if the
analysis and design models can provide insight into what is likely to go wrong, then
fault-based testing can find significant numbers of errors with relatively low expen-
ditures of effort.

Integration testing (when applied in an OO context) looks for plausible faults in
operation calls or message connections. Three types of faults are encountered in
this context: unexpected result, wrong operation/message used, incorrect invoca-
tion. To determine plausible faults as functions (operations) are invoked, the be-
havior of the operation must be examined.

Integration testing applies to attributes as well as to operations. The “behaviors”
of an object are defined by the values that its attributes are assigned. Testing should
exercise the attributes to determine whether proper values occur for distinct types of
object behavior.

It is important to note that integration testing attempts to find errors in the client
object, not the server. Stated in conventional terms, the focus of integration testing is

8 Sections 14.7.3 through 14.7.6 have been adapted from an article by Brian Marick posted on the In-
ternet newsgroup comp.testing. This adaptation is included with the permission of the author. For
further information on these topics, see [MAR94]. It should be noted that the techniques discussed
in Sections 14.7.3 through 14.7.6 are also applicable for conventional software.
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to determine whether errors exist in the calling code, not the called code. The opera-
tion call is used as a clue, a way to find test requirements that exercise the calling code.

'lfyw vrlntmd expect a program to work, you will more likely see o working program-—you will miss failures.”
o Cem Kaner ot al.

14.7.4 Test Cases and Class Hierarchy

Inheritance does not obviate the need for thorough testing of all derived classes. In
fact, it can actually complicate the testing process. Consider the following situation.
A class Base contains operations inherited() and redefined(). A class Derived rede-
fines redefined() to serve in a local context. There is little doubt the Derived::redefined()
has to be tested because it represents a new design and new code. But does De-
rived::inherited() have to be retested?

If Derived::inherited() calls redefined() and the behavior of redefined() has changed,
Derived::inherited() may mishandle the new behavior. Therefore, it needs new tests
even though the design and code have not changed. It is important to note, however,
that only a subset of all tests for Derived::inherited() may have to be conducted. If part
of the design and code for inherited() does not depend on redefined() (i.e., that does
not call it, nor any code that indirectly calls it), that code need not be retested in the
derived class.

Base::redefined() and Derived::redefined() are two different operations with different
specifications and implementations. Each would have a set of test requirements de-
rived from the specification and implementation. Those test requirements probe for
plausible faults: integration faults, condition faults, boundary faults, and so forth. But
the operations are likely to be similar. Their sets of test requirements will overlap. The
better the OO design, the greater is the overlap. New tests need to be derived only for
those Derived::redefined() requirements that are not satisfied by the Base::redefined() tests.

To summarize, the Base::redefined() tests are applied to objects of class Derived. Test
inputs may be appropriate for both base and derived classes, but the expected results
may differ in the derived class.

14.7.5 Scenario-Based Testing

Fault-based testing misses two main types of errors: (1) incorrect specifications and
(2) interactions among subsystems. When errors associated with incorrect specifi-
cations occur, the product doesn’t do what the customer wants. It might do the
wrong thing, or it might omit important functionality. But in either circumstance,
quality (conformance to requirements) suffers. Errors associated with subsystem in-
teractions occur when the behavior of one subsystem creates circumstances (e.g.,
events, data flow) that cause another subsystem to fail.

Scenario-based testing concentrates on what the user does, not what the product
does. This means capturing the tasks (via use-cases) that the user has to perform,
then applying them and their variants as tests.
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Scenarios uncover interaction errors. But to accomplish this, test cases must be
more complex and more realistic than fault-based tests. Scenario-based testing
tends to exercise multiple subsystems in a single test (users do not limit themselves
to the use of one subsystem at a time).

As an example, consider the design of scenario-based tests for a text editor by re-
viewing the informal use-cases that follow:

Use-Case: Fix the Final Draft

Background: I[t's not unusual to print the “final” draft, read it, and discover some an-
noying errors that weren't obvious from the on-screen image. This use-case describes the
sequence of events that occurs when this happens.

1. Print the entire document.
2. Move around in the document, changing certain pages.
3. As each page is changed, it's printed.

4. Sometimes a series of pages is printed.

This scenario describes two things: a test and specific user needs. The user needs are
obvious: (1) a method for printing single pages and (2) a method for printing a range of
pages. As far as testing goes, there is a need to test editing after printing (as well as the
reverse). The tester hopes to discover that the printing function causes errors in the ed-
iting function; that is, that the two software functions are not properly independent.

Use-Case: Printa New Copy

Background: Someone asks the user for a fresh copy of the document. It must be
printed.

1. Open the document.
2. Print it.

3. Close the document.

Again, the testing approach is relatively obvious, except that this document didn't ap-
pear out of nowhere. It was created in an earlier task. Does that task affect this one?

In many modern editors, documents remember how they were last printed. By de-
fault, they print the same way the next time. After the Fix the Final Draft scenario, just
selecting “Print” in the menu and clicking the Print button in the dialog box will cause
the last corrected page to print again. So, according to the editor, the correct sce-
nario should look like this:

Use-Case: Print a New Copy

1. Open the document.

2. Select “Print” in the menu.

3. Check if you're printing a page range; if so, click to print the entire document.
4. Click on the Print button.
5

. Close the document.
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But this scenario indicates a potential specification error. The editor does not do
what the user reasonably expects it to do. Customers will often overlook the
check noted in step 3 above. They will then be annoyed when they trot off to the
printer and find one page when they wanted 100. Annoyed customers signal
specification bugs.

A test case designer might miss this dependency in test design, but it is likely that
the problem would surface during testing. The tester would then have to contend
with the probable response, “That’s the way it's supposed to work!”

14.7.6 Testing Surface Structure and Deep Structure

Surface structure refers to the externally observable structure of an OO program. That
is, the structure that is immediately obvious to an end-user. Rather than performing
functions, the users of many OO systems may be given objects to manipulate in some
way. But whatever the interface, tests are still based on user tasks. Capturing these
tasks involves understanding, watching, and talking with representative users (and
as many nonrepresentative users as are worth considering).

There will surely be some difference in detail. For example, in a conventional sys-
tem with a command-oriented interface, the user might use the list of all commands
as a testing checklist. If no test scenarios exist to exercise a command, testing has
likely overlooked some user tasks (or the interface has useless commands). In an ob-
ject-based interface, the tester might use the list of all objects as a testing checklist.

The best tests are derived when the designer looks at the system in a new or un-
conventional way. For example, if the system or product has a command-based in-
terface, more thorough tests will be derived if the test case designer pretends that
operations are independent of objects. Ask questions like, “Might the user want to use
this operation—which applies only to the Scanner object—while working with the
printer?” Whatever the interface style, test case design that exercises the surface
structure should use both objects and operations as clues leading to overlooked tasks.

Deep structure refers to the internal technical details of an OO program. That is,
the structure that is understood by examining the design and/or code. Deep struc-
ture testing is designed to exercise dependencies, behaviors, and communication
mechanisms that have been established as part of the design model (Chapters 9
through 12) for OO software.

The analysis and design models are used as the basis for deep structure testing.
For example, the UML collaboration diagram or the deployment model depicts col-
laborations between objects and subsystems that may not be externally visible. The
test case designer then asks: Have we captured (as a test) some task that exercises
the collaboration noted on the collaboration diagram? If not, why not?

uﬂmdof mistakes and thus make them crimes.”
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In Chapter 13, we noted that software testing begins “in the small” and slowly pro-
gresses toward testing “in the large.” Testing in the small focuses on a single class
and the methods that are encapsulated by the class. Random testing and partition-
ing are methods that can be used to exercise a class during OO testing [KIR94].

14.8.1 Random Testing for OO Classes

c To provide brief illustrations of these methods, consider a banking application in
ADVICI‘ which an Account class has the following operations: open(), setup(), deposit(), with-
The number of possible  draw(), balance(), summarize(), creditLimit(), and close() [KIR94]. Each of these opera-

permutations for tions may be applied for Account, but certain constraints (e.g., the account must be
random testing con . . .

grow qute lorge. A opened before other operations can be applied and closed after all operations are
strategy similor fo completed) are implied by the nature of the problem. Even with these constraints,
orthogonal array there are many permutations of the operations. The minimum behavioral life history

festing can bf’ wed  of an instance of Account includes the following operations:
improve festing

efficiency.
open *setup * deposit * withdraw * close

This represents the minimum test sequence for Account. However, a wide variety
of other behaviors may occur within this sequence:

openesetup * deposit * [deposit | withdraw | balance | summarize | creditLimit]" * withdraw * close

A variety of different operation sequences can be generated randomly. For example:

Test caser;:  openesetup*deposit® deposit *balance * summarize * withdraw * close

Test case ry:  openesetupedeposit* withdraw * deposit * balance * creditLimit * withdraw * close

These and other random order tests are conducted to exercise different class in-
stance life histories.

SAFEHOME

scene: Shakira's cubicle. to all of the Sensor objects f

. &&.rmmbe“ of the familiar with ite ,
mmemqfeum,who areworking  Jamie (laughing): swe,
7 fun to add the “doggie angsf'
Shakira: The one

ope Some fests for the Detector with four ops: read(),
g ‘the one thot dllows access  Before a sensor can be re
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times, and that's o likely
sensor before iY's been

an error message of some |
disables the sensor and the
same as fest #3¢

Shakira: Not to worry. That's the:

14.8.2 Partition Testing at the Class Level

Partition testing reduces the number of test cases required to exercise the class in
much the same manner as equivalence partitioning (Section 14.6.2) for conventional
software. Input and output are categorized and test cases are designed to exercise
each category. But how are the partitioning categories derived?

State-based partitioning categorizes class operations based on their ability to
change the state of the class. Again considering the Account class, state opera-
tions include deposit() and withdraw(), whereas nonstate operations include bal-
ance(), summarize(), and creditLimil(). Tests are designed in a way that exercises
operations that change state and those that do not change state separately.
Therefore,

Test case p;: open*setup * deposit * deposit * withdraw * withdraw * close
Test case p,:  open*setup* deposit * summatrize * creditLimit * withdraw * close

Test case p; changes state, while test case p, exercises operations that do not change
state (other than those in the minimum test sequence).

Attribute-based partitioning categorizes class operations based on the attributes
that they use. For the Account class, the attributes balance and creditLimit can be used
to define partitions. Operations are divided into three partitions: (1) operations that
use creditLimit, (2) operations that modify creditLimit, and (3) operations that do not use
or modify creditLimit. Test sequences are then designed for each partition.

Category-based partitioning categorizes class operations based on the generic
function that each performs. For example, operations in the Account class can be
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categorized as initialization operations—open(), setupy(), computational operations—
deposil(), withdraw(), queries—balance(), summarize(), creditLimit()) and termination
operations—close).

Test case design becomes more complicated as integration of the object-oriented
system begins. It is at this stage that testing of collaborations between classes must
begin. To illustrate “interclass test case generation” [KIR94], we expand the banking
example introduced in Section 14.8 to include the classes and collaborations noted
in Figure 14.11. The direction of the arrows in the figure indicates the direction of
messages, and the labeling indicates the operations that are invoked as a conse-
quence of the collaborations implied by the messages.

Like the testing of individual classes, class collaboration testing can be accom-
plished by applying random and partitioning methods, as well as scenario-based
testing and behavioral testing.

14.9.1 Multiple Class Testing

Kirani and Tsai [KIR94] suggest the following sequence of steps to generate multiple
class random test cases:

1. For each client class, use the list of class operations to generate a series of
random test sequences. The operations will send messages to other server
classes.

2. For each message that is generated, determine the collaborator class and the
corresponding operation in the server object.

Class collabo-
ration diagram
for bemking
application
(adapted from
[KIR94))

cardinserted verifyAcct
password verifyPIN
deposit verifyPolicy
withdraw withdrawReq
accntStatus depositReq

terminate acctinfo
—— —

il verify Status ' 99‘?""%“' |
depositStatus initialDeposit
dispenseCash authorizeCard creditlimit validPIN
printAccntStat deauthorize accntlype validAcct
readCardinfo CM balance
getCashAmnt Withdrgw
deposit
close
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3. For each operation in the server object (that has been invoked by messages
sent from the client object), determine the messages that it transmits.

4. For each of the messages, determine the next level of operations that are in-
voked and incorporate these into the test sequence.

To illustrate [KIR94], consider a sequence of operations for the Bank class relative
to an ATM class (Figure 14.11):

verifyAcct * verifyPIN « [ [verifyPolicy * withdrawReq] | depositReq| acctinfoREQ]"

A random test case for the Bank class might be
Test case r; = verifyAcct *verifyPIN * depositReq

In order to consider the collaborators involved in this test, the messages associated
with each of the operations noted in test case r; is considered. Bank must collabo-
rate with ValidationInfo to execute verifyAcct() and verifyPIN(). Bank must collabo-
rate with Account to execute depositReq(). Hence, a new test case that exercises
these collaborations is

Test case ry = verifyAcctBank[validAcctValidationinfo] « verifyPINBank
[validPinValidationlnfo] * depositReq* [depositaccount]

The approach for multiple class partition testing is similar to the approach used
for partition testing of individual clas®es. A single class is partitioned as discussed in
Section 14.8.2. However, the test sequence is expanded to include those operations
that are invoked via messages to collaborating classes. An alternative approach par-
titions tests based on the interfaces to a particular class. Referring to Figure 14.11,
the Bank class receives messages from the ATM and Cashier classes. The methods
within Bank can therefore be tested by partitioning them into those that serve ATM
and those that serve Cashier. State-based partitioning (Section 14.8.2) can be used
to refine the patrtitions further.

14.9.2 Tests Derived from Behavior Models

In Chapter 8, we discussed the use of the state diagram as a model that represents
the dynamic behavior of a class. The state diagram for a class can be used to help
derive a sequence of tests that will exercise the dynamic behavior of the class (and
those classes that collaborate with it). Figure 14.12 [KIR94] illustrates a state diagram
for the Account class discussed earlier. Referring to the figure, initial transitions
move through the empty acct and setup acct states. The majority of all behavior for
instances of the class occurs while in the working acct state. A final withdrawal and
account closure cause the Account class to make transitions to the nonworking acct
and dead acct states, respectively.



